
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735

PP 20-29

www.iosrjournals.org

International Conference on Emerging Trend in Engineering and Management Research 20 | Page

(ICETEMR-2016)

FPGA Implementation of Token-Based Clam AV Regex Virus

Signatures with Early Detection

 Rajalakshmi.R
1
, Anbarasan.A

2

 1
PG Scholar, Department of ECE, Surya Group of Institutions; mailrajilakshmi@gmail.com

 2
Asst. Prof, Department of ECE, Surya Group of Institutions; apporvan@gmail.com

Abstract-This paper describes hardware architecture for high speed regex pattern matching with ClamAV

virus database. The proposed method is incorporated with a new technique namely early detection in matching

the regex patterns. With the information reduction approach, instead of viewing the pattern matching as byte

sequences, the input byte stream is transformed into a token stream. The processing architecture will then

process the token stream with bit-split string matching method to determine if any virus signatures can be found.

Furthermore, this paper proposes a novel reconfigurable clock divider model to avoid synchronization

problems during page-enabled parallel processing. The detection engine is memory-based and therefore the

FPGA need not be reconfigured to support dynamic updates. The proposed approach can provide worst-case

performance guarantee also for variable rate pattern match and efficient in terms of power with gated latch

control circuit.

Index Terms—non-deterministic finite automaton, parallel processing, network intrusion detection, gated

latch, memory-based.

I. INTRODUCTION
Every system connected to the Internet is susceptible to different kinds of attack such as virus and

worm inflections, junk mail (spam messages) and email spoofing. Therefore there exists an increasing demand

for network devices capable of inspecting the content of data packets in order to enhance network security and

provide application-specific services. Firewalls were used considerably to prevent access to systems from

intrusions but they cannot get rid of all security threats, nor can they identify attacks when they occur. Hence,

next generation firewalls should provide deep packet inspection
3, 10

capabilities, in order to provide prevention

from these attacks. Network Intrusion Detection Systems (NIDS) performs the function of deep packet

inspection. Matching engines inspect packet’s payload searching for patterns that would alert security threats.

Matching every incoming byte against thousands of pattern characters at wire rates such as for 3G, 4G high

mobility communications is a complicated task. Most of the intrusion detection systems that accomplish deep

packet inspection perform simple string matching algorithms to match packets against a large, but finite set of

strings. Therefore, modern matching engines uses regular expression-based pattern matching, since regular

expressions present higher expressive power and flexibility. Performance analysis of SNORT
2

open source IDS

rule-set reveals that 31% of total processing time is due to string matching and it may goes up to 80% in case of

Web-intensive traffic. Therefore, string matching is the most computationally intensive part of anti-virus

system. So in this paper we mainly concentrate on optimized matching algorithms.

Intrusion detection systems implemented in general-purpose processors can only perform up to a few

hundred Mbps throughput. Therefore, hardware-based solution is the only possible way to increase the

performance speeds. FPGA-based systems
22, 19

provide higher flexibility and high throughput comparable to

systems based on ASIC platform. FPGA-based systems can exploit parallelism to achieve acceptable processing

throughput. Several implementations for FPGA-based intrusion detection using regular expressions

(NFAs/DFAs), ternary CAM
16, 18

 and filtering techniques
22, 23

have been proposed.

Implementation of NIDS signatures as deterministic finite-state automata (DFAs) may leads to state

explosion problem. Although the overall memory has been reduced by Yu and Chen
3

with the proposal of

multiple DFAs, state-space explosion arises for complex signature sets. Another limitation is the increased

scanning time because multiple DFAs should inspect payloads now. State explosion problems has not been

resolved completely even after the implementations of DFA compression techniques based on transition rule

reduction
10, 11, 12, 13, 14

and data encoding
15, 16

. For the HFA method
17

, hardware implementation details have not

been revealed clearly. Scalability problem occurs for XFA method presented in
20

with increased number of non-

wildcard bytes. Bloom filters techniques proposed by Ho and Lemieux
22, 23

and by Thinh and Hieu
19

pose upper

bound limit on the length of string segments to be handled.

mailto:mailrajilakshmi@gmail.com

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 21 | Page

(ICETEMR-2016)

The major limitation of hardwired circuit approaches
21, 24

to exploit parallelism is that they require

FPGA to be reconfigured for every database update. State explosion problem has not been addressed in the

approach presented by Lee
6

to detect virus signatures with regex features based on generalization of Aho-

Corasick string matching algorithm
4
.

In this paper we present a memory-efficient parallel string matching scheme using the pattern dividing

approach and its hardware architecture for identification of patterns. Initially the byte stream is transformed into

token stream by dividing the long target patterns into sub-patterns with a fixed length and then processed with

bit-based comparisons. In this approach, there is an increased number of shared common states due to reduced

length and this approach is very efficient when compared with the cases of the string matching with byte-based

comparisons.

Here, we present the results of our implementation with open-source IDS software ClamAV
1
. The

amount of processing speed achieved with the optimizations of string matching algorithm and the improvement

in throughput has been analyzed. The methodology that we developed here is efficient in terms of throughput

and worst-case performance. The proposed method speeds up the processing rate of the string searching by three

times.

The rest of the paper is laid out as follows. In section 2, we shall examine the properties of ClamAV

pattern set. In section 3, we shall present the novel architectures namely early detection method and gated latch

control circuitry. In section 4, we explain the token detection methods and the aggregation unit. In section 5, we

shall present a new methodology namely page-enabled parallel processing (PEPP) to raise the throughput rate of

the pattern matching engine. Performance analysis of the revised architecture will be presented in section 6.

Section 7 is the conclusion.

II. PROPERTIES OF THE CLAMAV PATTERNSET
ClamAV is open source anti-virus software which could run on various platforms. ClamAV database

has been used for analyzing signature set in various hardware-based virus matching implementations. In this

study, ClamAV version 0.97.3 has been used to perform the experimental analysis. ClamAV virus database

consists of basic, regular expression (or regex) and MD5 types. MD5 signatures only take about 8% of matching

time.

So, it is obvious that Basic and Regex type of virus signatures are to be focused mainly. A basic

signature is represented as a continuous byte string and a regex signature is an extension of the basic pattern

with various wildcards, as given in Table I. Regex type of virus signatures are used to detect polymorphiciruses.

Virus name Signature

Exloit.HTML.ObjectType 3c6f626a65637420747970653d222f2f2f2f2f2f2f2f2f2f2f2f

DOS.Arcv.1183 8dbc????b94c042e8005??47e2f9c3*33c0bb0001be0001899c????8984????e8

DOS.Trivial.Sbvc.A e800005db824258d??????????23258d????cd21b44eb9

Worm.FlyStudio-20 5?5?5?5?f85?5?0f83

Worm.Allaple-315
c74424{3}(40|41)00{-10}8b4424{-30}33d2{-5}0401(5c|4c|44|54)24{-

35}0401(5c|4c|44|54)24{-36}0401(5c|4c| 44|54)24

Dos.Flip.Gen 0ebb????????????b2??81c1????eb

Figure 1.Example virus signatures

While the virus signature DOS.Arcv.1183 is presented with wildcard characters. Each symbol "?" can

be replaced with any 2-byte data and symbol "*" can be replaced with any number of bytes. When searching for

this regex signature, the matching engine must be able to match separate patterns "8dbc", "b94c042e8005",

"47e2f9c3", "33c0b000lbe0001899c", "8984", "e8" and can be reassembled by the scoreboard.

Table I. Common Wildcards in Regular Expression Signature

Wildcard Distance constraints

?? 1 byte

n? match a high nibble

?n match a low nibble

{n} n bytes

{-n} less than n bytes

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 22 | Page

(ICETEMR-2016)

{n-} more than n bytes

{n-m} more than n bytes but less than m bytes

* any number of byte

From the Fig. 1 it shows that virus signatures can get differentiated with respect to their dominants. For

example, virus DOS.Trivial.Sbvc.A consists of 3 string components e800005db824258d, 23258d and

cd21b44eb9 delimited by wildcard bytes, Worm.Fly.Studio-20 is dominated by nibbles and virus Worm.Allaple-

315 is dominated by alternate bytes.

Displacement count such as arbitrary displacement *, exact-count {n}, at-most count {-n}, at-least

count {n-} and range-count {n-m} are also quite common in ClamAV pattern set to define wildcards. Exact-

count {n} can be used to define the fixed number of wildcard bytes, for example 25????????????7d is equivalent

to 25{6}7d.

III. PROPOSED EARLY DETECTION METHOD
To build many tiny state machines is the key to achieving high performance so that each of the state

machines searches for only a portion of the bits of each rule. The new methodology that we proposed is

specifically directed toward implementation in an architecture built up as an array of small memory blocks.

Therefore, a system that maintains tight worst-case bounds on performance can be easily updated without

interrupting the matching function. So the proposed method is considered to be efficient than existing best

known approaches.

3.1 Bit-split Scheme

The hardware architecture is configured bit-split scheme that partitions and bit-splits a finite-state

machine (FSM) into number of small state machines. And finally the prototype of the proposed bit-split

matching engine is presented with Altera Kit to analyze the hardware modules.

Here the state machines have been partitioned into a set of new state machines, thus each of the state

machines matches only some of the bits of the input stream. Furthermore, each new state machine is only passed

when a given input data could be a match. Therefore a match will be announced only when all of the match

vectors agree which is implemented using partial match vector module. The partial match vector is a bit-vector

which denotes the match for each rule. A full match vector can be declared by taking the AND of each of the

partial match vectors, which accounts for the true match for a particular rule.

Table II. Binary Encoding of Input Stream “client”

char 7 6 5 4 3 2 1 0

c 0 1 1 0 0 0 1 1

l 0 1 1 0 1 1 0 0

i 0 1 1 0 1 0 0 1

e 0 1 1 0 0 1 0 1

n 0 1 1 0 1 1 1 0

t 0 1 1 1 0 1 0 0

Each bit of the eight-bit ASCII code is extracted to construct its own binary state machine, a state

machine whose alphabet contains only 0 and 1. Based on the ASCII code, bit-based matching is first made at the

state machines of lowest edges. For example for the input stream “client”, the ASCII codes are “63, 6C, 69, 65,

6E 74” and the binary digits are extracted as given in Table II.

 Matching of consecutive state machines can be triggered only if the system receives the enable signal

from the lowest edge state machine. Thus considerable amount of processing time can be efficiently reduced

from the fact the probability of occurrences of intrusions in the input stream will be considerably low. Such that

most of the matching problems can be skipped off by the architecture and therefore increased throughput rate

can be achieved with our early detection approach.

3.2 Gated latch control circuit
Since the matching of virus signatures presented as sub-patterns, for example with the pattern “client”

sub-pattern 1 is “cli” and “ent” as sub-pattern 2. The result of partial match vector of sub-pattern1 can be used as

the next state determiner for the second partial match vector to start the matching process for the sub-pattern 2

as shown in Fig. 2. Matching process for the patterns triggered by early detection module can be skipped

through Gated latch control circuit for low power consumption.

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 23 | Page

(ICETEMR-2016)

Sub-

pattern 1

Byte

stream

Therefore, skipping of the matching process with the proposed control circuitry can greatly contributes

to the increase in processing speed of the hardware architecture in addition to efficient power saving by keeping

the hardware resources idle for those which skipped by the early detection methodology. The proposed scheme

can be easily implemented for both basic and regex signatures.

 F7 F6 F5 F4 F3 F2 F1 F0

c 63 0 1 1 0 0 0 1 1

l 6C 0 1 1 0 1 1 0 0

i 69 0 1 1 0 1 0 0 1

e 65 0 1 1 0 0 1 0 1

n 6E 0 1 1 0 1 1 1 0

t 74 0 1 1 1 0 1 0 0

Figure 2.Early Detection module

IV. TOKEN DETECTION METHOD
The increase in number of counting blocks poses difficulties to the design of the hardware matching

engine. The hardware implementation using ad hoc approach is not feasible to incorporate large count of

hardware circuits to execute the required counting. Also the hardware implementation using DFA suffers from

state explosion problem in case of counting blocks get expanded into explicit states.

Segments that are delimited by wildcard characters may be partitioned into 2 or more tokens. Bit-split

string detection method can be used to detect the string tokens. PACX (Extended P-AC
7
) method has been used

to match fixed-length tokens with 4 to 15 bytes which consists of a basic string component at the front combined

with a small number of wildcard bytes, nibbles and/or alternate bytes. A regex detection method called MX-

NFA
5

(Memory-based non-deterministic automaton) is used to detect more complex tokens which may consists

of counting blocks and other regex features.

Figure3.Block diagram of the signature matching engine

4.1 PACX token detection unit

The PACX (extended P-AC string detection method) detection method differs from the P-AC method

in the fact that PACX method does not contain any feedback path. Furthermore PACX method can support

wildcard byte, nibble and alternate byte values.

Token

queue

Bit-split

PACX

MXNFA M
er

g
e

N
/w

Aggregation

Unit

Output

Interface

Detected Virus

Sub-

pattern 2

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 24 | Page

(ICETEMR-2016)

Figure4.PACX detection method

The PACX detection method can process tokens with 4 to 7 bytes as given in Fig. 4 which can execute

matching of tokens with 4 bytes. The lookup table and a processing unit are the important components of PACX

method. There are about 6 fields to account for an entry in the lookup table which are char (character), cm

(character mask), ns (next state), bs (bit-select mask), tid (token ID) and control flags. The comparator does not

required for LT0 as it can be directly indexed by the input byte. Direct indexing plus bit-select (DIBS) approach
9

can be used to access the local table for the consecutive stages.

Token Description

t1 28223266

t2 2822(33|34|35|36|37|38|39)66

t3 7638e?e9

t4 83??6a68

 LT0 LT1 LT2 LT3

Figure5. Sample set of tokens and the character-trie.

The detection method can be illustrated with the four example set of tokens. The character-trie is

formed for the given set of tokens and consists of transition symbol (number next to an edge) and base address

(number inside a state) as shown in Fig. 5. Detailed explanation for the set-up of the lookup tables of PACX

method for the example set of tokens is given in
8
.

4.2 MX-NFA token detection unit

The MX-NFA regex detection method can be used to process the tokens that are complex to be

executed by any other detection methods. The implementation of this method is based on NFA. The active rule

table can be used to store and keep track of the transition rules of the underlying NFA. In the table, each rule can

be enabled or disabled automatically by the control logic circuits.

Control flags can be used to represent the corresponding behavior of a transition rule which is listed in

Fig.6 and Fig.7.

Control flag Description

Enable (E) The rule is active if E=1.

Initial (I)
If I=1, the rule is active after

initialization (or system reset).

LT0

LT1

LT2

LT3

o
/p

 i
n

te
rf

a
ce

Input
token

01

02

01

28

22 32

33-39

76

03

38

02

83

03
??

e?

6a

01

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0

t1

66

02

09

0A

A

66
t2

t3

t4

e9

68

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 25 | Page

(ICETEMR-2016)

Hold (H)
If H=1, the E bit will not be reset

automatically.

Sequential

activation

(S2S1)

It specifies the number of sequential

rules to be fired.

S2S1=00 : activate rule i+1

S2S1=01 : activate rules i+1 to i+2

S2S1=10 : activate rules i+1 to i+3

S2S1=11 : activate rules i+1 to i+4

Output (O) If O=1, an output signal is generated.

Figure6.Control flags for a match entry in the MX-NFA.

Control flag Description

Respond (R)
If R=1, responds to count-event signal

CE and clear E-bit.

Activate

Counter (C)

If C=1, sends an activate count signal

AC to the count module when the rule is

fired.

Figure 7.Control flags for a match entry in the MX-NFA count module.

For example a token aabb{-2}ccdd{-10}eeff is considered and MX-NFA rule table can be constructed

as given in Fig.8. The wildcard entries (e3 and e4) can be used to support the at-most count {-2}. Using

activation rule e2, the sequential rules e3, e4 and e5 can be fired. The counter module can be used to handle the

at-most count {-10} in MX-NFA regex detection method.

The E-bit of e1 which is set to 1 after system reset can remain active with H=1. The at-most count can

be checked by the count module which consists of an initial count register and a count-down counter. The

counter starts the count-down if the count signal AC is passed to the count module. The count-event signal CE

will be generated to stop the counting when the counter reaches to 0. Detailed explanation for the

implementation of MX-NFA rule table can be seen from
8
.

Rule Symbol
Control flags

I H O S2S1 R C

e1 aa 1 1 0 00 0 0

e2 bb 0 0 0 10 0 0

e3 ?? 0 0 0 00 0 0

e4 ?? 0 0 0 00 0 0

e5 cc 0 0 0 00 0 0

e6 dd 0 0 0 00 0 1

e7 ee 0 1 0 00 1 0

e8 ff 0 0 1 00 0 0

e9 null 0 0 0 00 0 0

Figure8.Setup of the MX-NFA rule table for the token aabb{-2}ccdd{-8}eeff

4.3 Token refinements and Aggregation Unit

The detected tokens are reassembled by the aggregation unit to check for any multi-token segment.

Hence the lower-bound displacement can be checked by the aggregation unit despite of the token detection unit.

There may be the possibility for the occurrence of two or more tokens with only variation in at-most

count. For example in case of token 5b4424{-20}33d2 and the token 5b4424{-30}33d2, MX-NFA detection

method takes account of the token with the larger at-most count only, i.e. token 8b4424{-30}33d2.

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 26 | Page

(ICETEMR-2016)

The AU can be implemented as a conventional NFA. Current state list (CSL) and next state list (NSL)

are the two lists of states which can be maintained as FIFO queues. An entry in CSL/NSL is a 4-tuple (stateID,

bs, loc, expiry), where stated is the state ID, bs is the bit-mask for generating the address offset, loc is the

reference location of the token that causes the state transition, and expiry is the expiry timestamp of the state.

The aggregation unit can be used to perform the approximated checking instead of exact checking of

displacement counts in the case of multiple at-most counts.

V. IMPLEMENTATION OF PAGE-ENABLED PARALLEL PROCESSING (PEPP)
To catch up with the throughput requirement, we need to devise new system architecture that can

process multiple bytes of input data per cycle. It is possible to increase the system throughput by a

straightforward parallel processing technique. By formulating a novel parallel processing methodology for string

matching data structures, we can increase the throughput rate efficiently.

 This result is important because we provide this parallel computation while at the same time providing

worst case performance guarantees for the string matching algorithm. With the presented parallel approach for

hardware implementation of string matching, system throughput can be doubled with simple logic structure.

This is an advantage that ensures scalability of the method in handling fast expanding signature sets of network

intrusion detection systems.

By allowing page enabled parallel processing (PEPP) as presented in Fig. 9, throughput rate is

highly increased. In Asynchronous circuits, handshaking protocol is used for time reference. In synchronous

circuits clock will be used for time reference.

Figure 9.Page-enabled parallel processing (PEPP)

The main limitation of this approach is the occurrences of synchronization errors in synchronous

circuits. There are three cases of synchronization mismatches called mismatch during ASCII encoding,

mismatch occurs during string matching conversion and mismatches may occurs between the pages. This

limitation can be avoided using PLL (Phase locked loop) clock technique. Here highly reconfigurable clock

divider will be used along with reconfigurable delay lines based phase match schemes. By using this model

single source clock can be used for multi rate clock domains.

Here in this study, five pages with various operating clocks are implemented based on single source

clock by using RECONFIGURABLE CLOCK DIVIDER. And phase signals will be successfully matched with

PLL.

To cope up with the variable rate browsing of the users from different geographical locations such as

2G,3G or 4G speeds, the source clock will be divided into required range. And this divided clock will be

matched with global clock using PLL. For every positive clock of match PAGE data will be read out and match

with input stream. The main advantage of this method is that this implementation can support the previously

proposed early detection method. During matching time early detection will be carried out from any PAGES.

VI. EXPERIMENTAL RESULT AND EVALUATIONS
The simulation results for the page-enabled parallel implementation given with ModelSim-Altera 6.4a

showed the efficiency of the approach. Here the input intrusions are partitioned into pages. Adoptive

Page 1

Page 2

Page 3

Page 4

Page 5

Clk 1

Clk 2

Clk 3

Clk 4

Clk 5

Reconfigurable

clock divider

PLL

Pattern

Matching

Engine

(NIDS)

Global

Clock

Synchronization

with source clock

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 27 | Page

(ICETEMR-2016)

reconfigurable phase locked loop based clock divider has been used for variable rate pattern match. Bit-wise

FSM based state transitions are performed between input bit stream & sub pattern from each pages. Final global

match has been based on PMV vector.

SIMULATION OUTPUT WITH CLOCK MISMATCH

The partitioning of the source clock with the reconfigurable clock divider contributes to the

improvement of clock speed in the new design. Also the hardware matching engine only uses a few percents of

the LUTs available in the FPGA board. If the method is proposed on ASIC, more chip area can be allocated to

memory blocks and the matching engine can achieve even higher clock speed.

From the evaluation results it is clear that our bit-split based matching approach effectively reduces the

information that needs to be executed by the aggregation unit and the scoreboard.

Our pattern matching engine is presented on Altera DE2 Development board. FPGA chip in the DE2

board is Cyclone II EP2C70F896C6. We use Quartus II 12.0 Web Edition for hardware synthesis and mapping.

QUARTUS II hardware synthesis report (shown in Table III) proved the efficiency of the proposed matching

method.

SIMULATION OUTPUT WITH PROPER SYNCHRONIZATION

TABLE III. Power and Throughput rate on CYCLONE IIEP2C70F9 86C6

Power

consumption

Speed

(char/cycle)

Bit-split

scheme
69.5 mW

1(max

250 MHz clk)

Gated latch

control circuit
46.3 mW 1

PEPP 54.7 mW
multiple

(char/cycle)

VII. CONCLUSION
Content inspection in intrusion detection system is a computation intensive task. To inspect web-

intensive traffic in real-time, hardware accelerators are necessary to perform this action. However, the rate of

increase in database is much faster than the rate of increase in the clock frequency of VLSI technology. Hence,

there exists a demand to design new hardware architecture that can process multiple bytes of input data per

cycle. In this paper, we proposed the bit-split matching approach and could support both basic and regular

expression virus signatures. Experimental results on ClamAV signature database show that our system could

support 1Gbps throughput and is more efficient than previous approaches in term of processing speed. Our

design mainly bases on memory and could be easily updated for new virus signatures.

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 28 | Page

(ICETEMR-2016)

The proposed architectural features namely bit-split matching scheme and gated latch control circuit

contributes to the improved throughput rate. The page-enabled parallel matching system could exploit the high

matching throughput FPGA-based engine while maintain the flexibility and low power consumption.

The method of page-enabled parallel computation proposed in this study is only efficient to simple

strings. Therefore, the future work will be focused to the design of hardware engine for matching the regexes in

the virus database.

REFERENCES
[1]. ClamAV anti-virus system, http://www.clamav.net

[2]. Snort: http://www.Snort.org

[3]. F. Yu, Z. Chen, Y. Diao, T. V. Lakshman and R. H. Katz, “Fast and Memory-Efficient Regular

Expression Matching for Deep Packet Inspection”. In Proc. of ANCS, 2006.

[4]. A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic search. Communications

of the ACM,18(6):333–340, 1975.

[5]. D. Pao, N.L. Or and R.C.C. Cheung, “A memory-based NFA regular expression match engine for

signature-based intrusion detection”, Computer Communications, Vol.36, pp. 1255-1267, 2013.

[6]. T. H. Lee, “Generalized Aho-Corasick algorithm for signature based anti-virus applications”, IEEE Int.

Conf. Computer, Communications and Networks, pp. 792-797, 2007.

[7]. D. Pao, X. Wang, X. Wang, C. Cao and Y. Zhu, “String searching engine for virus scanning”, IEEE

Trans. Comput., Vol. 60,pp. 1596–1609, 2011.

[8]. Nga Or, Xing Wang and Derek Pao, "Memory-Based Hardware Architectures to Detect ClamAV Virus

Signatures with Restricted Regular Expression Features", IEEE Transactions on Computers, no. 1, pp. 1,

doi:10.1109/TC.2015.2439274

[9]. D. Pao, W. Lin and B. Liu, “A memory efficient pipelined implementation of the Aho–Corasick string

matching algorithm”, ACM Trans. Archit. Code Optim., Vol. 7, Article 10, 2010.

[10]. S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J. Turner, “Algorithms to accelerate multiple regular

expressions matching for deep packet inspection”, ACM SIGCOMM Computer Communication Review,

Vol. 36, pp. 339–350, 2006.

[11]. J. Van Lunteren, “High-performance pattern-matching for intrusion detection”. IEEE INFOCOM, pp.1–

13, 2006.

[12]. T. Liu, Y. Yang, Y. Liu, Y. Sun and L. Guo, “An efficient regular expressions compression algorithm

from a new perspective”, IEEE INFOCOM, pp.2129-2137, 2011.

[13]. J. Patel, A. X. Liu and E. Torng, “Bypassing space explosion in high-speed regular expression matching”,

IEEE/ACM Trans. Networking, pp. 1701-1714, 2014.

[14]. K. Wang, Z. Fu, X. Hu and J. Li, “Practical regular expression matching free of scalability and

performance barriers”, Computer Communications, Vol. 54, 97-119, 2014.

[15]. N. Tuck, T. Sherwood, B. Calder and G. Varghese, “Deterministic memory-efficient string matching

algorithms for intrusion detection”, IEEE INFOCOM, pp. 2628-2639, 2004.

[16]. C.R. Meiners, J. Patel, E. Norige, A.X. Liu and E. Torng, “Fast regular expression matching using small

TCAM”, IEEE/ACM Trans. Networking, Vol. 22, pp. 94-109, 2014.

[17]. M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep packet inspection”, ACM Conf.

on Emerging Network Experiment and Technology (CoNEXT), pp.1–12, 2007.

[18]. D. Pao, Y.K. Li and P. Zhou, “Efficient packet classification using TCAMs”, Comput. Netw.Vol.50, pp.

3523–3535, 2006.

[19]. T. N. Thinh, T. T. Hieu, H.Ishii and S. Tomiyama, “Memory-efficient signature matching for ClamAV on

FPGA”, IEEE Int. Conf. Communications and Electronics, pp. 358-363, 2014.

[20]. R. Smith, C. Estan, S. Jha and S. Kong, “Deflating the big bang: fast and scalable deep packet inspection

with extended finite automata”, ACM SIGCOMM Computer Communication Review, Vol. 38, pp. 207–

218, 2008.

[21]. I. Sourdis, S. Vassiliadis, J. Bispo and J.M.P. Cardoso, “Regular expression matching in reconfigurable

hardware”, J.of Signal Processing Systems, Vol.51, pp. 99 –121, 2008.

[22]. J.T.L.Ho and G.G.F. Lemieux, “PERG: A scalable FPGA-based pattern-matching engine with

consolidated Bloomier filters”, Int. Conf. on Field-Programmable Technology, pp.73–80, 2008.

[23]. J.T.L.Ho and G.G.F. Lemieux, “PERG-Rx: A hardware pattern-matching engine supporting limited

regular expressions”, ACM FPGA’09, pp. 257-260, 2009.

[24]. I. Sourdis, D.N. Pnevmatikatos and S. Vassiliadis, “Scalable multigigabit pattern matching for packet

inspection”, IEEE Trans. VLSI Systems, Vol. 16, pp. 156-166, 2008.

FPGA Implementation of Token-Based Clam AV Regex Virus Signatures with Early Detection

International Conference on Emerging Trend in Engineering and Management Research 29 | Page

(ICETEMR-2016)

AUTHOR’S BIOGRAPHY

Rajalakshmi.R received the B.E. degree in electronics and communication engineering from the Thangavelu

Engineering College, Anna University, Chennai in 2012. She is currently pursuing the M.E. degree in VLSI

Design with the Surya Group of Institutions, Anna University. Her research interests are in Computer Security,

Biometric System and Security Solutions.

Anbarasan.A received his B.E Degree in Annamalai University in the year 2009, M.E-VLSI Design in Anna

University in the year 2012. He is currently working as an Assistant Professor in the Department of Electronics

and Communication at Surya Group of Institutions. He has publications in International Journal of Applied

Engineering Research. His area of interest includes VLSI Design, Cryptographic Engineering and Hardware

Security.

